
Performance Analysis of Matrix Multiplication
Algorithms Using MPI

Javed Ali ,Rafiqul Zaman Khan

Department of Computer Science, Aligarh Muslim University, Aligarh.

Abstract :The practical analysis of parallel computing
algorithms is discussed in this paper. The cluster is used to
analyze the performance of the algorithms by using the
various nodes of the cluster. Parallel computing by the MPI
has made a tremendous impact on a variety of areas ranging
from computational simulation for scientific and engineering
applications to commercial application. We propose the
performance analysis of the matrix multiplication
algorithms through MPI.
Keywords: Imperative, Declarative, Speedup, Efficiency,
correlation, researcher etc.

 INTRODUCTION:
Parallel algorithms play an important role in the
computation of the high performance computing
environment. Dividing a task into the smaller tasks and
assigning them to different processor for parallel
execution are the two key concepts in the performance of
parallel algorithms. Multiprocessor machines allow
different application program to execute at the same time
at different processor. They also allow a single
application program to execute faster if it can be rewritten
to use multiple processors. There are the two types of
programs
(a) Imperative (b) Declarative
In imperative program, the programmer has to specify the
action of each process and how they communicate and
synchronized. This contrast with declarative program e.g.
functional or logic programs in which the concurrency is
implicit and there is no state information of a program [2].
In declarative programs, independent part of the program
may execute in parallel; they communicate and
synchronize implicitly when one part depends upon the
results produced by another. The implementation of the
declarative programs on the traditional machine is
possible only when the imperative program is written on
the machine.
The most common way to write a parallel program to use
a sequential language and a subroutine library. In
particular, the bodies of process are written in the
sequential language such as C or FORTRAN. Process
creation, communication and synchronization are then
programmed by calling library function. For message
passing environment we use the MPI.A parallel
programming library contains subroutines for process
creation, process management, communication and
synchronization. The nature of routines and particularly
there implementation depend upon weather the library
supports shared variable programming or message
passing. The MPI and PVM libraries are two common
standards for message passing; both have widely used,

public domain implementation that supports both C and
FORTRAN [11].
The complete MPI [12] specification consists of nearly
129 calls. However, a beginner MPI programmer can get
by with very few of them (six to twenty-four). All that is
really required is a way for processes to exchange data,
that is, to be able to send and receive messages.
The following outline can be used to structure most MPI
programs:
 All MPI programs must include a header file (in C,

mpi.h; in FORTRAN, mpif.h).
 All MPI programs must call MPI_INIT as the first

MPI call, to initialize themselves.
 Most MPI programs call MPI_COMM_SIZE to

determine the size of the current virtual machine, that
is, how many processes are running.

 Most MPI programs call MPI_COMM_RANK to
determine their rank, which is a number between 0
and size-1.

 Conditional process and general message passing can
take place, for example, using the calls MPI_SEND
and MPI_RECV.

 All MPI programs must call MPI_FINALIZE as the
last call to an MPI library routine.

Hence, by using just the following six calls, that is,
MPI_INIT, MPI_COMM_SIZE,
MPI_COMM_RANK,MPI_SEND, MPI_RECV, and
MPI_FINALIZE, a number of useful MPI programs can
be written.
Architecture independent parallel algorithms may used to
write a parallel code that is scalable portable and reusable.
In a distributed architecture, processors have their own
private memory and they interact using a communication
network rather than a shared memory.So , processes can’t
communicate directly by sharing variables instead, they
have to exchange message with each other. A message
passing is best for programming producer consumer and
interacting peers, whereas RPC (Remote Procedure Call)
and rendezvous are best for client-server programming.
The Parallel Universal Matrix Multiplication
Algorithm(PUMMA) that include matrix multiplication
routines and their performance depend weakly on
processor configuration and block size[3].The PUMMA
package may be implemented for single precision real and
complex, and double precision real and complex.
Parallel matrix multiplication has been investigated
extensively in the last two decades [4-5]. There are
different approaches for matrix-matrix multiplication:
1Dsystolic [6], 2D-systolic, Cannon’s algorithm [4],
Fox’s algorithm [7],Berntsen’s algorithm [8], the

Javed Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3103 - 3106

3103

transpose algorithm [8] and DNS algorithm [7, 9,10].
Fox’s algorithm was extended in PUMMA (Parallel
Universal Matrix Multiplication Algorithm) using
different data distribution formats. DIMMA (Distribution
Independent Matrix Multiplication Algorithm) [11] is
related to SUMMA(Super Scalar Matrix Multiplication
Algorithm) but uses a different pipelined communication
scheme for overlapping communication and computation.
Digital image processing encompasses broad spectrum of
mathematical methods. They are transform techniques,
convolution, correlation techniques in filtering processes
and set of linear algebraic methods like matrix
multiplication, pseudo inverse calculation, linear system
solver, different decomposition methods, geometric
rotation and annihilation. Generally we can classify all
image processing algorithms into two groups: basic
matrix operations and special image processing
algorithms. Fortunately, most of the algorithms fall in the
classes of the matrix calculations, convolution, or
transform type algorithms. These algorithms possess
common properties such as regularity, locality and
recursive. In this paper, the speedup of a parallel
algorithm is defined where it can be defined as a ratio of
the corresponding sequential and parallel times.
1.1 Interacting Peers: There are three useful
communications pattern; centralized, symmetric and ring.
The processes are the nodes in the graph and edges are the
pairs of communication channels. According to the
literature analysis the symmetric solution is the shortest
and easy to program because every process does exactly
the same thing .It also uses the largest no of message
(unless broadcast is available).The message could be
transmitted in parallel if the underlying communication
network support concurrent transmission.
Communication overhead greatly diminishes performance
improvement (speedup) that might be gained from
parallel execution. In the centralized solution, the
message sent to the co-coordinators are all sent at about
the same time; hence only the first receive statement
executed by the coordinator is likely delay for very large
problem. Similarly, the results are sent one after the other
from the coordinator to the other process, so the other
process should be to awaken rapidly. The ring solution is
inherently the linear with no possibility of overlapping
message transmissions. Hence, the ring based solution
will perform poorly.
1.2 Iterative Parallelism: Matrix Multiplication
An iterative sequential program is one that uses for and
while loops to examine data and computer result. An
iterative parallel program contains two or more iterative
processes. Each process compute results for a subset of
data, then the result are combined.
e.g. Given matrix a, and b, assume that each matrix has n
rows and columns, and that each has been initialized. This
require computing n2 inner products, one for each pair of
rows and columns.
The shared variable declared as follows:
Double a[n,n], b[n,n], c[n,n];

The computation of the matrix multiplication follows the
sequential program; The inner loop (with index k)
computes the inner product of row I of matrix a and
column j of matrix b, and then stores the result in
c[i,j][1].Matrix multiplication is an example of
embarrassingly parallel application, because there are a
multitude of operations that can be executed in parallel.
Two operations can be executed in parallel if they are
independent. Since the write sets for pair of inner product
are disjoint, we could compute all of them in parallel.
Alternatively, compute row of result in parallel, column
of results is parallel, or blocks of rows or columns in
parallel.
The concurrent programming can be achieved by using
co(concurrent) statement:

The co statement specifies that its body should be
executed concurrently, depending upon the number of
processors, for each value of index i. The matrix
multiplication may be achieved by using the column of c
on parallel:

It’s safe to interchange two loops as long as the bodies are
independent and hence compute the same result, as we do
there. We can also compute all inner products in
parallel.This can be programmed by using a single co
statement with two indices:

The body of the above co statement is executed
concurrently for each combination of values of i and j.The
speedup and the efficiency analysis is performed by the
formula given below:

Speedup (S) = (Serial Execution Time) / (Parallel
execution Time)
Efficiency E(%) = Speedup (S) /No of processers (P)

Javed Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3103 - 3106

3104

1.3 Cluster Hardware Requirements: Hardware
configuration for the cluster formation is the basic
requirement for the computation of the parallel program
for matrix multiplication. We used various nodes of the
configuration, Pentium 4,2 GB RAM, Speed 2.80 GHz,
Dell Intel ™ Core ™ 2 Duo CPU E-7400.The Fedora
version of Linux operating system make the computation
easy by using the MPI standard message passing library.
1.4 Conclusion: The inefficient partitioning of the tasks
amongst the various nodes of the cluster, participating in
the parallel computing give the poor results due to the
scalability problem. Table 1, 2, 3 and the corresponding
figures 1,2,3 shows the problem of scalability due to the
inefficient partitioning of the matrix. The distributions of
the tasks play the most important role in the parallel
computing. While the distribution of the tasks take place
in the efficient manner the results shows that the speed up
and efficiency factor of the matrix multiplication
algorithms increased at the significant level. Table 4 and
corresponding results shows the speedup factor and
efficiency enhancement of the matrix parallel computing.
The efficiency increased by this method of computation is
81.55%.

NP(Number of Processor) Running Time (S)

1 0.000016
2 12.510740
3 22.856150
4 21.223457
5 33.79125
6 33.8693

Table 1: Running Time Measurement
NP(Number of Processor) Speedup

2 1.2789
3 0.7000
4 0.75388
5 0.47349

Table 2: Speedup Measurement

NP(Number of Processor) Efficiency
2 0.6394
3 0.2333
4 0.1884
5 0.0946
6 0.0787
Table 3: Efficiency Measurement

Table 4: Computational Analysis if Serial Execution Time
:343.23

Figure 1:Running time Analysis

Figure 2:Speedup Analysis

Figure 3:Efficiency Analysis

Figure 4:Running time Analysis

No of the
Processor for
3000*3000

Parallel Connectivity

Time (S) Speedup (S)
Efficiency (E)

(%)
2 325.23 1.05 52.0

3 187.25 1.83 61.0

4 110.56 3.10 77.50

5 84.26 4.07 81.46

6 70.14 4.89 81.55

Javed Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3103 - 3106

3105

Figure 5:Speedup Analysis

Figure 6:Efficiency Analysis

1.5 Future Work: We have presented the class of
parallel matrix multiplication algorithms.Theoratical and
experimental result shows that, by choosing the
appropriate method of the task partitioning amongst the
various nodes of the cluster give the better results in the
comparison of the scalability problem. The efficiency
increased in this paper is up to 81.55%.The researcher can
show the hybrid algorithms that can solve the problem of
choosing size automatically according to the need of the
program and scalability problem.

REFERENCES:
1. Anderson E., Bai Z., Bischof C., Blackford S., Demmel J.,

Dongarra J., Du Croz J., Greenbaum A., Hammarlings.,
Mckenney A., Sorensen D., “LAPACK Users' Guide, third
ed. Society for Industrial and Applied Mathematics”,
Philadelphia, PA, 1999.

2. Whaley R. C., Petitet A., Dongarra J. J., “Automated
empirical optimizations of software and the ATLAS
project” Parallel Computing 27, 1.2 (2001), 3.35.

3. Choi,J., Dongarra J.J. and Walker D.W., “PUMMA:Parallel
Universal Matrix Multiplication Algorithms on Distributed
Memory Concurrent Computers”, Concurrency Practice
and experience,Vol6(7),54-570,1994.

4. Cannon L. E, “A cellular computer to implement the
Kalman Filter Algorithm”, Ph.D. dissertation, Montana
State University, 1969.

5. Choi J., “A Fast Scalable Universal Matrix Multiplication
Algorithm on Distributed-Memory Concurrent
Computers”, in Proc. IPPS '97, 1997.

6. Golub G.H and Van C.H L., “Matrix Computations.
”,Johns Hopkins University Press, 1989.

7. Fox G. C., Otto S. W., and Hey A. J. G., “Matrix
algorithms on a hypercube I: Matrix
multiplication”,Parallel Computing, vol. 4, pp. 17-31. 1987.

8. Berntsen J., “Communication efficient matrix
multiplication on hypercubes, Parallel Computing”, vol. 12,
pp. 335-342, 1989.

9. Dekel E., D. Nassimi, and S. Sahni, “Parallel matrix and
graph algorithms”, SIAM Journal on Computing”, vol.10,
pp. 657-673, 1981.

10. Ranka S. and Sahni S., “Hypercube Algorithms for Image
Processing and Pattern Recognition”, Springer- Verlag,
New York, NY, 1990.

11. William G., Ewing Lusk, Nathan Doss, and Anthony
Skjellum“High performance, portable implementation of
the MPI message passing interface standard”, Parallel
Computing, 22(6):789-828,September 1996.

12. Fagg G. E., Bukovsky A., and Dongarra J. J., “Harness and
fault tolerant MPI", Parallel Computing, 27(11):1479-1495,
October 2001.

Javed Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3103 - 3106

3106

